
Proceedings of Virtual Concept 2005
Biarritz, France, November 8th – November 10th, 2005

An impulse-based dynamic simulation system for VR
applications

Jan Bender, Dieter Finkenzeller, Alfred Schmitt

Universität Karlsruhe
Institut für Betriebs- und Dialogsysteme

Am Fasanengarten 5
76128 Karlsruhe

Germany
Phone: +49 (0)721 608 3965
Fax: +49 (0)721 608 8330

E-mail: {jbender, dfinken, aschmitt}@ira.uka.de

Abstract: This paper describes a system for dynamic
simulation of linked rigid bodies in real-time. The system was
developed to simulate mechanical behaviour in VR
applications. An extension for a 3D modelling tool was
developed which provides the possibility to model a VR scene
including the geometries and mechanical parameters of all
rigid bodies and the properties of the joints between them
easily. For the dynamic simulation an impulse-based method is
used. The distinguishing feature of this method is that all kind
of constraints are satisfied with the iterative computation of
impulses. The advantage of this iterative technique is that it is
fast and accurate results can be achieved. The dynamic
simulation system uses efficient collision detection methods.
For every collision that is detected a contact region between
the objects is determined to provide an accurate collision
response.

Key words: VR-system, dynamic simulation, impulse-
based method, multi body systems, mechanical behaviour

1- Introduction

Realistic mechanical behaviour in virtual reality applications
becomes more and more important because it provides a higher
degree of immersion to the user. A VR application with
realistic mechanical behaviour has to simulate dynamic effects,
to detect collisions and to resolve them with frictional forces in
real-time.

For the dynamic simulation of a VR scene a description of the
whole scene is needed. This description must include the
geometries and properties of all rigid bodies as well as the
constraints between them. A 3D modelling tool is needed to
create a description of the geometries in a VR scene. In this
work Maya [1] was used for modelling. In Maya it is already
possible to describe the properties of rigid bodies. Just for the
description of the constraints between them an extension of

Maya had to be written in MEL (Maya Embedded
Language). So now the complete description of a VR scene
with all necessary parameters for the dynamic simulation can
be created with this modelling tool.

In this work two types of constraints are used: joint and non-
penetration constraints. There are many different kinds of
joints, for example ball joints, hinge joints, servo motors etc.
A joint links two rigid bodies together by constraints for
certain points fixed to these rigid bodies and for their
velocities. The dynamic simulation method has to guarantee
that these constraints are satisfied in every simulation step.
Interpenetration of two rigid bodies has to be detected and
resolved to satisfy the non-penetration constraints.

The dynamic simulation system that is presented in this
paper satisfies both kinds of constraints by computing
impulses that simulate the forces acting on the rigid bodies.
The use of impulses is possible because the simulation makes
discrete time steps. Exactly the same change of velocity that
a continuous force causes in one time step can be achieved
by computing an impulse that changes the velocity at once.
Many other simulation systems compute continuous forces to
satisfy the constraints for joints and impulses for the collision
response. The advantage of the presented method is that all
constraints can be solved in a uniform way.

The outline of this paper is as follows. In the next section a
short overview of dynamic simulation systems and collision
detection and collision response methods is given.
Afterwards the architecture of the presented simulation
system is introduced. In the fourth section the dynamic
simulation method, the collision detection and the collision
response are described in detail. The succeeding section
contains results achieved with the presented simulation
system. This paper ends with a short conclusion and an
outlook for future work.

101 -1- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

2- Related Works

The “Open Dynamics Engine” [2] of Russel Smith is a free
library for the dynamic simulation of rigid bodies with joint
and non-penetration constraints. Brian Mirtich and John Canny
[3][4] describe an impulse-based dynamic simulation of rigid
bodies. In their simulator “Impulse” they use forces to solve
joint constraints and impulses for the collision response with
friction. David Baraff [5] researches in his work mainly the
non-penetration constraints and compares his results with the
penalty method. Smith, Mirtich and Baraff all use the friction
model of Coulomb for their collision response.

For the collision detection and response in a dynamic
simulation system it is necessary to determine the closest
points of two rigid bodies. There are two very fast methods to
solve this problem: the algorithm from Gilbert, Johnson and
Keerthi [6] (GJK) and the one from Lin and Canny [7]. The
GJK algorithm uses the Minkowski sum of two polytopes to
compute the distance between them. It is even able to compute
the penetration depth of two convex objects. A robust
implementation of this algorithm was written by Van den
Bergen [8]. The closest feature algorithm of Lin and Canny is
not able to handle interpenetration of objects. It works with
voronoi regions. Brian Mirtich has written an improved version
of this algorithm. His implementation “V-Clip” [9] is more
robust and can handle penetration.

One of the main problems of a collision response method is the
handling of resting contacts. Brian Mirtich [10] uses a velocity
threshold in his work to determine if the system must handle a
collision or a resting contact. In the case of a resting contact an
impulse is computed that reverses the relative velocity of the
contact points. By applying this impulse interpenetration is
prevented. Guendelman et al. [11] change the order of a
simulation step to handle resting contacts. First the velocities
of all rigid bodies are updated, then the contacts are processed
and at last the positions of the bodies are updated. The new
order of the simulation step prevents bodies with resting
contacts from bouncing.

3- System architecture

The dynamic simulation system consists of two parts. One part
is the extension for the 3D modelling tool Maya to create a VR
scene including all parameters for the dynamic simulation. The
other part is the dynamic simulator.

3.1 - The modelling tool

The 3D modelling tool Maya has an own dynamic simulation
system integrated. So it is already possible to define rigid
bodies with all parameters in Maya. This can be used for the
modelling of a VR scene with dynamics. The dynamic
simulator in Maya only supports four different types of joint
constraints: spherical joints, hinge joints, spring joints and a
barrier constraint. The joint definitions of Maya cannot be used
for the simulator in this work because more types of joints are
needed. In Maya the geometry of a rigid body is used for the
graphical output and the collision detection. In the dynamic
simulation of this work a rigid body can have several
geometries for the graphical output and several geometries for

the collision detection. The geometries for the graphical
output and the collision detection do not need to be the same.
Maya provides the possibility to add own attributes to every
geometry that is created.

Figure 1: Spherical joint, hinge joint, cardan joint, slider joint

Every object that is created while modelling a VR scene for
the dynamic simulator of this work gets an additional
attribute with the type of this object, for example rigid body,
collision geometry, spherical joint etc. If a rigid body with
several geometries for the graphical output and for the
collision detection should be created then first a rigid body
must be built. This rigid body already has a geometry that
will be used for the computation of the inertia tensor, for
graphical output and for collision detection if there are no
other collision geometries defined for this body. Afterwards
all additional geometries can be created as children of the
rigid body node in the scene graph of Maya. A joint needs at
least two additional attributes for the two rigid bodies that it
links together. Some types of joints need more attributes, for
example for the torque of a servo motor. If the user adds a
joint to the VR scene, a polygon primitive is added to the
scene which enables him to define the positions of the joint
points very easily. The polygon primitives for some kinds of
joints are shown in figure 1.

Figure 2: Modelling a VR scene with Maya

A complete VR scene modelled with Maya is shown in
figure 2. After modelling the description of this scene can be
exported in a XML-file. This file contains all geometries,
joints and parameters for the dynamic simulation. Now the
simulator can import the XML-file and start with the
simulation.

101 -2- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

3.2 – The dynamic simulator

The concept of multi-threading was used for the design of the
simulation system to provide the possibility to run the dynamic
simulation parallel to a VR application. The dynamic
simulation runs in an own thread. In this way it is independent
from the thread for the graphical user interface. The properties
of the dynamic simulation system and the parameters of the
model that is simulated must not be changed and the simulation
data must not be read during a simulation step to guarantee
thread safety. The dynamic simulator has a command queue. If
a property of the simulator or the model should be changed by
another thread, then this thread must put a command with the
id of the property and the new value in the queue. Before every
simulation step all commands in the queue are executed and
deleted. The multi-threading of the simulation system is shown
in figure 3.

command
queue

data storage

add
command

execute commands

simulation step

save data

fetch
command

OpenGL
fetch
data

MEL

Gnuplot

GUI

Figure 3: Separation of GUI and dynamic simulation in two
different threads

After every simulation step the changed data, like for example
the positions of the rigid bodies, is copied in a data storage.
Other threads are allowed to use the data from this storage, for
example for the graphical output.

Figure 4: Test environment of the dynamic simulator

For the development of the dynamic simulator a test
environment (see figure 4) has been implemented. This test
environment uses the same access to the dynamic simulator as
a VR application. In this environment the parameters of the
simulator and of every object in the simulated VR scene can be
changed at run-time. This is necessary to analyze the behaviour

of the simulation method with different settings. The user can
also interact with the objects by applying impulses with a
simple mouse click. The test environment provides three
output possibilities for the simulation data. First there is an
OpenGL output for real-time visualization. Then the data can
be used for plotting with the program Gnuplot [12] and the
last possibility is an output as a MEL script which contains
all geometries and movements of the bodies. This script file
can be executed in Maya and generates an animation
sequence of the dynamic simulation which can be rendered
to get a photorealistic video.

4- Dynamic simulation

Every rigid body needs six parameters for the dynamic
simulation. For the computation of the translational
movement of a rigid body its mass m, its centre of mass C(t)
and its velocity v(t) are needed. The rotational movement is
computed with the inertia tensor J in body-space coordinates,
a unit quaternion q(t) that describes the rotation of the body
[13] and the angular velocity ()tω . The inertia tensor can be
computed with the mass and the geometry of the rigid body
[14]. The advantage of using a unit quaternion instead of a
rotation matrix is that the numerical error can be reduced
[15]. A quaternion has just four parameters to describe the
three degrees of freedom of the rotation whereas a rotation
matrix needs nine parameters. Because of this a solver for
ordinary differential equations (ODE) which is needed for
the dynamic simulation produces a greater numerical error if
rotation matrices are used. The numerical error in a rotation
matrix has the effect that the vectors of the coordinate system
that is represented by the matrix are not orthonormal
anymore. A quaternion just looses its unit length which can
be easily corrected by renormalizing it.

In the next section the dynamic simulation of an
unconstrained rigid body will be described. The following
section will explain how joint constraints can be satisfied
with impulses. In the last two sections of this chapter the
collision detection and collision response which are needed
to satisfy non-penetration constraints will be described.

4.1 – Simulation step of an unconstrained rigid
body

For a dynamic simulation step of a rigid body without any
constraints the parameters of this body at time must be
known and a time step size h must be given. Then the
parameters for the time

0t

h0t + can be computed. The mass
and the inertia tensor in body-space coordinates of a rigid
body are constant over time so just the other four parameters
have to be updated. If gravitation is the only external force
that acts on the rigid bodies then the acceleration due to
gravity g changes the velocity v and the centre of mass C as
follows:

0 0 0
0

() () () ()
h

v t h v t a t dt v t g h+ = + = + ⋅∫ (1)

101 -3- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

0 0 0
0

2
0 0

() () ()

1() ()
2

C t h C t v t g t dt

C t v t h g h

+ = + + ⋅

= + ⋅ + ⋅

∫
h

 (2)

The angular velocity ω for time can be computed by
solving the following differential equation (in body-space
coordinates):

0t h+

1() (() (()))t J t J tω ω ω−′ = ⋅ × ⋅ (3)

The last step is to compute the unit quaternion q for the time
. To get the following differential equation has

to be solved:
0t h+ 0(q t h+)

1() () ()
2

q t t q tω′ = ⋅ (4)

where ()tω is the quaternion [0, (), (), ()]x y zt t tω ω ω .

Equation (3) is solved with the Taylor series method. Therefore
the first n derivatives are computed with equation (5) to get an
error of the order . 1()nO h +

(1) 1 () ()

0

() ((() (())))
i

i k

k

i
t J t J t

k
ω ω+ − −

=

⎛ ⎞
= ⋅ ×⎜ ⎟

⎝ ⎠
∑ i kω (5)

Using the derivatives the new angular velocity can be
computed with:

()
() 1

0 0
0

() () (
!

kn
k

k

ht h t O h
k

ω ω +

=

+ = ⋅ +∑)n (6)

After the first n derivatives of ()tω are computed the first n
derivatives of the unit quaternion q(t) can be determined:

(1) () ()

0

1() (() ())
2

i
i k

k

i
q t t q t

k
ω+

=

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
∑ i k−

)

 (7)

Now the quaternion can be computed with the Taylor
series of order n:

0(q t h+

()
() 1

0 0
0

() () (
!

kn
k

k

hq t h q t O h
k

+

=

+ = ⋅ +∑)n (8)

If a desired accuracy desiredφ should be achieved from the ODE
solver an adaptive time step size is needed. For the
computation of a new time step size an estimation of the error
made during a time step is needed. The error made when
computing the quaternion 0(q t h)+ with the Taylor series
method of order n can be estimated by the magnitude of the
(n+1) th element of the Taylor series:

(1)
(1)

0: ()
(1)!

n
n

error
hq t
n

φ
+

+= ⋅
+

 (9)

Exactly as Press et al. did for an embedded Runge-Kutta
method [16] a new time step size can be computed as
follows:

1
n

desired
new

error

h h
φ
φ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (10)

If errorφ is larger than desiredφ then the simulation step must be
repeated and this time the new step size is used. Otherwise
the simulation can continue and the new step size is used for
the next simulation step.

4.2 – Joint constraints

In this section will be described how to satisfy joint
constraints using impulses. The method will be explained for
a spherical joint. Other joint types can be handled in a similar
way.

If two rigid bodies are linked with a spherical joint, then a
point A in the first rigid body is connected to a point B in the
second one. In each simulation step the two points should
have the same position and the same velocity, so the two
constraints of this joint are:

() ()

() ()
pos

A B ve

A t B t

u t u t

ε

lε

− ≤

− ≤
 (11)

where posε and velε are tolerance values. If both constraints
are satisfied for time and a simulation step as in section
4.1 is made, then both constraints are generally unsatisfied
for time

0t

0t h+ . Now impulses have to be computed to
correct this.

4.2.1 – Position constraint

First an impulse p must be found to satisfy the point position
constraint. The impulse p will be applied at point A to the
first rigid body and the impulse –p at point B to the second
rigid body. These impulses must eliminate the distance
between the two points at time . They do not have any
influence on the energy of the system because they have
opposite directions. The positions of the two points at time

0t h+

0t h+ can be determined by first solving the following
differential equation for the vector 0 0() ()r t P t C 0()t= −
which points from the centre of mass to the respective point:

() () ()r t t r tω′ = × (12)

This equation can be solved with the Taylor series method
from section 4.1. Then the new position of the point is given
by the sum of 0(r t h)+ and which can be
determined with equation (2). Now the distance vector d

0()C t h+

101 -4- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

between the two points at time 0t h+ can be determined:

0 0 0() : () (d t h B t h A t h+ = + − +) (13)

The following matrix has the property that the result of
multiplying it to an impulse is the velocity change this impulse
causes:

1
3

1:K I r J r
m

−= ⋅ − ⋅ ⋅ (14)

where 3I is the three-dimensional identity matrix and r is the
cross-product matrix corresponding to r. An impulse p that
eliminates the distance d in a time step of length h must change
the relative velocity of the two points by d h . This impulse
must satisfy the following equation:

0
1 2 1 2

()
() ()

d t h
K p K p K K p

h
+

= ⋅ − ⋅ − = + ⋅ (15)

The matrix 1 2()K K+ is constant, non-singular, symmetric and
positive definite [10] so the impulse p can be determined by
inverting this matrix. The point position constraint can be
satisfied by applying this impulse at time . 0t

This method works well for one joint but not for a chain with
several joints as shown in figure 5. The constraint of the left
joint of the pendulum is satisfied but not the one of the right
joint. If an impulse is computed and applied for the right joint
its constraint will be satisfied but the left joint will break. In
this case an impulse for every joint is computed in an iterative
loop. In every iteration step the distances between the joint
points get smaller. The loop terminates if every constraint is
satisfied for a certain tolerance posε .

Figure 5: Pendulum with two spherical joints

With the iterative method it is possible to satisfy all position
constraints in a multi body system. The computed impulses
simulate the inner forces in the joints.

4.2.2 – Velocity constraint

After computing an impulse for every position constraint and
applying it to the rigid bodies, the velocities of all bodies
change. Now a simulation step like in section 4.1 is made. The
new velocities have the effect that all position constraints are

satisfied after the simulation step but now in general the
velocity constraints of the joints are not satisfied anymore.
This can be corrected with a very similar method like the one
of section 4.2.1.

First the velocity difference of the two joint points A and B
must be determined. The velocity of a point in a rigid
body can be computed with the following equation:

pu

() () () (() ())Pu t v t t P t C tω= + × − (16)

With the velocity difference and the
matrix

() : () ()B Au t u t u t∆ = −

1 2: ()K K K= + from the last section an impulse p can
be computed which eliminates the velocity difference if it is
applied to the points in opposite directions:

1:p K u t−= ⋅∆ () (17)

For every joint an impulse is computed in an iterative loop
with this equation until every velocity constraint is satisfied
for a certain tolerance velε .

4.3 – Collision detection

If the multi body system which is simulated has non-
penetration constraints, a collision detection method is
needed to find out if bodies are interpenetrating or colliding.
For the collision detection every rigid body has at least one
collision geometry. This geometry can be different from the
geometry used for the graphical output and for the
computation of the inertia tensor. If a rigid body has a very
complex geometry with thousands of triangles it can be
advantageous to use a collision geometry of lower detail to
increase the speed of the simulation. The collision detection
method that is used in this work can only handle convex
polyhedra. If a non-convex object is simulated, the collision
geometry must be split into several convex parts.

It makes no sense to test collision geometries of the same
rigid body for contacts or interpenetration. A collision test
between static bodies is also unnecessary and just consumes
time for computation. In these two cases the system can
decide automatically not to make a collision test. Sometimes
it is very useful if the modeller of a VR scene can decide
which pairs of bodies are tested for collisions, for example if
a pair of bodies will never have contact because of certain
constraints. Because of this the collision detection has a table
that defines which pairs of collision objects will be tested for
contact or interpenetration.

Figure 6 shows a simulation step with collision detection.
First the translation and rotation of all collision objects must
be updated. Afterwards the collision detection must find all
contact points and normals between the bodies. Then a
simulation step with collision response can be executed.
After the simulation step the system must check if there is
any penetration between two bodies. In case of a penetration
the last simulation step must be undone and the point of time

 when the respective bodies just had contact must be ct

101 -5- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

determined. This time of contact can be determined with a
binary search method. The difference between the time of
contact and the time before the simulation step gives the time
step size . With the new time step size the simulation step
will be executed again. Now the bodies which were
interpenetrating before will just have contact.

ct

ch

Determine contact points and
normals

Undo simulation stepInterpenetration
between bodies?

Simulation step

yes

Update transformation of all
collision objects

no

Determine time of contact and
set new time step size

Figure 6: Simulation step with collision detection

The collision detection of the simulation system works in three
phases. The first phase reduces the collision tests to speed up
the collision detection. Every body has an axis-aligned
bounding box with dynamic size. A bounding box test is a very
fast method to find all rigid bodies that are close enough for a
collision. In every simulation step a fast sweep and prune
method determines all overlapping bounding boxes by
checking whether the intervals on the x-, y- and z-axis of the
bounding boxes overlap. This method uses insertion sort and
caches the sorted lists of the last simulation step. Because of
the spatial and temporal coherence of the dynamic simulation
the sweep and prune method runs in linear time. For each pair
of overlapping boxes the collision test continues with the
second phase.

In the second phase the closest features of every collision pair
that was found in the first phase are computed. A feature is a
vertex, an edge or a face. For the determination of the closest
features V-Clip [9] is used which makes use of voronoi
regions. V-Clip also computes the distance, the closest points
and the contact normal of these features. If this distance is
smaller than a certain tolerance value collisionε but greater than
zero a collision is found. Otherwise if the distance is smaller
than zero the bodies interpenetrate and a binary search must
start to find the time of contact . If the distance is greater
than

ct

collisionε the bodies are too far apart for a collision.

In the second phase the closest features and , the closest
contact points

1f 2f

1P and 2P and the contact normal n have been
determined. In the third phase a test for multiple contact points
for each collision is performed. In this phase the system
searches for features that have a distance which is greater or
equal than the distance of the closest features and smaller than
the tolerance value collisionε . If such features are found the
closest points of these features are additional contact points.

All contacts between two bodies have the same contact
normal n. This normal points from the second body to the
first one. The contact points of each body build a contact
polygon. Figure 7 shows an example of such a contact
polygon.

Figure 7: Two rigid bodies with multiple contact points, the
contact polygon of the second body is marked red

In the following it will be explained how the features with
additional contact points for a collision pair can be
determined. The contact polygon of each body lies in the
same plane as a face of this body and as its closest feature
which was computed in the second phase. So firstly these
two faces must be determined.

As the closest feature lies in the same plane as the searched
face, the face must be the closest feature itself or one of the
neighbouring faces. After the candidates for the two searched
faces have been determined, the dot product of the face
normal of each candidate of the first body with the face
normal of each candidate of the second body is build. The
minimum of the dot products belongs to the searched pair of
faces because the smallest angle is between these faces. The
two faces and all neighbouring vertices and edges are
candidates for features with additional contact points.

If one of the candidate features of the first body lies in the
voronoi region of a candidate feature of the second body and
the distance between these two features is smaller than the
collision tolerance value collisionε then a new contact is found.
The contact points of this new contact are the closest points
of the two features. The contact normal is the normal of the
contact polygon of the second body. With this method all
additional contact points can be determined.

4.4 – Collision response

The method presented in the paper of Guendelman et al. [11]
was implemented at first for the collision response in the
dynamic simulator. This method works well for single rigid
bodies but it is hard to combine with the method for
resolving joint constraints. Because of this a new method is
developed at the moment which is based on the hypothesis of
Poisson and on the Coulomb friction model. The hypothesis
of Poisson gives an approximation for the collision impulse
of two bodies in the direction of the contact normal and the

101 -6- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

Coulomb friction model is an approximation for the friction
forces that act in the opposite direction of the tangential
relative point velocities of the contact point pairs.

The new method for collision response differentiates between
three cases. If the dot product of the contact normal with the
relative point velocity of the contact points is
greater than zero then the points are separating and no impulse
needs to be computed. If this product is smaller than zero but
greater than a tolerance value

1 2() ()u t u t−

contactε− then the contact points
build a resting contact. Otherwise a real collision has occurred.

In the last two cases a collision impulse has to be computed. If

 is the impulse that makes the relative velocity of the
contact points in normal direction to zero, then the impulse for
collision response in normal direction is computed with the
following equation (hypothesis of Poisson):

np−

np+

(1)np e+ = + ⋅ np− (18)

where e is the coefficient of restitution. This coefficient is a
constant between zero and one depending on the materials of
the two colliding bodies. If the coefficient of restitution is one,
then the collision is totally elastic and if it is zero, the collision
is totally plastic.

To determine the impulse first the relative velocity of the
two contact points in normal direction n must be computed
with the following equation:

np−

2 1() ((() ()))nu t u t u t n n∆ = − ⋅ ⋅ (19)

Afterwards the impulse can be determined with the following
formula:

1:n Tp
n K n

= ⋅∆
⋅ ⋅

()nu t (20)

This works for collisions with one contact point but if there are
multiple contact points the impulse for each pair of contact
points influences the relative point velocities of all other pairs
of points. This problem can be solved by iteratively computing
the impulses . In every iteration step an impulse is
computed for each pair of contact points until all relative point
velocities are smaller than a certain tolerance value. This
method works for a pair of rigid bodies that have multiple
contact points and that are not linked to other rigid bodies with
joints. If a non-penetration constraint and a joint constraint
exist for a rigid body then the iteration loop can be combined
with the one from section 4.2.2 to find a correct impulse

np−

np−
for each contact point. So in every iteration step first an
impulse for each contact point pair is computed with equation
(20) and then the velocity constraint for each joint must be
satisfied by computing an impulse with equation (17). So all
bodies of a chain have influence on the collision impulse np− .
With this method a collision response for linked rigid bodies is
possible.

The computation of friction impulses using the Coulomb
friction model has not been implemented yet but this will be
done soon.

5- Results

In this section the results of the dynamic simulation of three
different models are presented. The first simulation was
made to measure the performance of the impulse-based
method. Then with the next model the speed of the collision
detection will be determined. The last simulation was made
to take a look at the accuracy of the collision response
method with friction that was already implemented. All
simulations were performed on a PC with the following
configuration: Intel Pentium 4 with 3.4 GHz, 1024 MB
DDR2 memory and nVidia GeForce 6600 GT with 128 MB
GDDR3 memory.

The first model that was simulated is a chain of eight rigid
bodies which are linked with spherical joints (see figure 8).
The spherical joints at both ends of the chain are fixed so the
chain will not fall down.

Figure 8: Chain of rigid bodies

The simulation was performed without collision handling to
measure only the time that is needed by the impulse-based
method. A fixed time step size of h=0.01 s was used. The
tolerance values were set to m and 1210posε −= 1210velε −= m
to achieve a very high accuracy. The Taylor method of order
five was used to solve the differential equations. The
simulation had a length of ten seconds, so one thousand
simulation steps were performed.

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 100 200 300 400 500 600

tim
e

number of impulses

Figure 9: Simulation performance

For each step the number of impulses that had to be

101 -7- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

computed for satisfying the position and velocity constraints of
all joints was counted and the time needed for the whole step
was measured. The results are shown in figure 9. The
simulation had to compute between 50 and 581 impulses in
every step. The mean value was 162. The impulse-based
method needed between 0,000668769 s and 0,003621727 s for
a whole simulation step. The average time was 0,001537897 s.
Even in the worst case the simulation was about three times
faster than real-time. In the average the simulation was more
than six times faster than real-time. With higher tolerance
values the simulation can run even faster.

The second model was build to measure the performance of the
collision detection. The model consists of a grid of cubes
which fall down on a fixed plane. In this model up to one
thousand cubes can have contact with each other. Each contact
can consist of several contact points. During the simulation the
time needed for all three phases of the collision detection was
measured. The results are shown in figure 10.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 200 400 600 800 1000 1200

tim
e

number of contacts points

Figure 10: Time needed for collision detection

The figure shows that the time needed for the collision
detection increases nearly linearly as the number of contact
points increases which can be explained easily. In the first
phase of the collision detection a sweep and prune method
which runs in linear time is used. The closest features
algorithm of the second phase exploits the spatial and temporal
coherence of the dynamic simulation and therefore needs only
constant time for each collision pair. So the second phase
needs linear time to process all collision pairs. The last phase
needs constant time for each collision pair to determine the
collision polygon. Altogether the collision detection needs
linear time. The mean value of contact points that occurred was
484 and the average time needed for the collision detection was
0,012924245 s. A normal VR scene consists of far less than
one thousand rigid bodies but even for this amount the
collision detection method is fast enough for a simulation in
real-time.

The last simulation was made to take a look at the accuracy of
the collision response method. The model consists of an
inclined plane with an angle of 22.5 degree and ten cubes
which are sliding down the plane with different friction
coefficients. The stopping distance of every cube can be
computed. After the simulation the computed value is

compared to the simulated stopping distance. The model is
shown in figure 11. The transparent cubes in the picture mark
the computed points where the simulated red cubes are
expected to stop.

Figure 11: Cubes on an inclined plane

The time step size used for the simulation was h=0.01 s and
for the collision detection a tolerance value of

0.00001 mcollisionε = was used. The following table shows
the results of this simulation.

friction
simulated
stopping
distance

computed
stopping
distance

difference

0.535 25.70322 25.70234 0.00088
0.57 19.37585 19.37792 -0.00207
0.605 15.72423 15.71905 0.00518
0.64 13.12114 13.11542 0.00572
0.675 11.11596 11.11587 0.00009
0.71 10.37414 10.37604 -0.00189
0.745 9.54625 9.54379 0.00247
0.78 8.7845 8.78449 0.00001
0.815 7.55768 7.55506 0.00262
0.85 6.48953 6.48689 0.00264

Table 1: Stopping distances

The simulation of this model needed about nine seconds until
all cubes stopped. In the worst case the difference between
the simulated and the computed stopping distance was
0.000572 m. The velocities of the decelerating cubes are
shown in figure 12. This figure shows how the velocities of
the rigid bodies get linearly smaller until they reach zero.
The accuracy of the collision response depends on the
tolerance value of the collision detection and on the used
time step size. By using a smaller time step size higher
accuracy can be reached.

The results in this section show that the introduced impulse-
based method is fast and accurate enough for the use in a VR
application. The VR system VISUM [17] already uses the
dynamic simulation system of this work for the simulation of
mechatronic systems. The simulation system is integrated as
a plug-in in VISUM.

101 -8- Copyright Virtual Concept

Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9

ve
lo

ci
ty

time

0.535
0.57

0.605
0.64

0.675
0.71

0.745
0.78

0.815
0.85

Figure 12: Velocities of decelerating rigid bodies

6- Conclusion and future work

In this paper an impulse-based dynamic simulation system was
presented. This system is able to run parallel to a VR
application and to simulate the dynamics of a VR scene. In a
multi-processor system the simulation can run on an own
processor. This raises the performance of the VR application.
The VR scene for the simulation can be created with an
extension of the 3D modelling tool Maya and the description of
this scene can be exported in a XML-file. The impulse-based
method that was introduced can handle joint and non-
penetration constraints. All constraints are satisfied by
applying impulses to the rigid bodies. The inner forces of the
joints are simulated by these impulses. The dynamic simulation
system can achieve very accurate results in real-time.

It is planned to improve the collision detection by exchanging
the binary search method with a method that is based on a
better estimation for the time of contact. As result the
simulation will run faster. Another two improvements are
planned for the collision response. The friction model of
Coulomb will be implemented for the new method and a
special joint for resting contacts will be developed. A higher
accuracy should be achieved with this joint.

7- References

[1] Alias Wavefront. Maya. http://www.aliaswavefront.com,
March 2005
[2] Smith R. Open dynamics engine.
 http://opende.sourceforge.net, March 2005
[3] Mirtich B., Canny J. Impulse-based Dynamic Simulation.
In Proceedings of Workshop on Algorithmic Foundations of
Robotics, February 1994.
[4] Mirtich B., Canny J. Impulse-based Simulation of Rigid
Bodies. Symposion on Interactive 3D Graphics, Monterey,
Cal., April 1995.
[5] Baraff D. Dynamic simulation of non-penetrating rigid
body simulation. PhD thesis, Cornell University, 1992.
[6] Gilbert E. G., Johnson D. W., Keerthi S.S. A fast procedure
for computing the distance between complex objects in three-

dimensional space. In IEEE Journal of Robotics and
Automation, vol. 4, pp. 193-203, Apr.1988.
[7] Lin M., Canny J. A fast algorithm for incremental
distance calculation. In IEEE Conf. on Robotics and
Automation, pages 1008-1014, 1991.
[8] Van den Bergen G. A Fast and Robust GJK
Implementation for Collision Detection of Convex Objects.
In Journal of Graphics Tools, 4(2):7-25, 1999.
[9] Mirtich B. V-Clip: Fast and robust polyhedral collision
detection. ACM Transactions on Graphics, 17(3):177-208,
July 1998.
[10] Mirtich B. Impulse-based dynamic simulation of rigid
body systems. PhD thesis, University of California,
Berkeley, 1996.
[11] Guendelman E., Bridson R., Fedkiw R. Nonconvex rigid
bodies with stacking. In Proceedings of SIGGRAPH 2003,
pp. 871–878.
[12] GNUplot. http://www.gnuplot.info/, March 2005
[13] Shoemake K. Animating rotation with quaternion
curves. In SIGGRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques,
pages 245–254. ACM Press, 1985.
[14] Mirtich B. Fast and accurate computation of polyhedral
mass properties. In Journal of Graphics Tools: JGT, 1(2):31–
50, 1996.
[15] Baraff D. Physically Based Modeling: Rigid Body
Simulation. SIGGRAPH Course Notes, ACM SIGGRAPH,
2001.
[16] Press W. H., Flannery B. P., Teukolsky S. A., Vetterling
W. T. Numerical Recipes in C, Cambridge University Press,
New York, 1992
[17] Finkenzeller D., Baas M., Thüring S., Yigit S., Schmitt
A. VISUM: A VR system for the interactive and dynamics
simulation of mechatronic systems. Virtual Concept 2003,
Biarritz, 5.-7. November 2003.

101 -9- Copyright Virtual Concept

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

