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Abstract: This paper describes a system for dynamic 
simulation of linked rigid bodies in real-time. The system was 
developed to simulate mechanical behaviour in VR 
applications. An extension for a 3D modelling tool was 
developed which provides the possibility to model a VR scene 
including the geometries and mechanical parameters of all 
rigid bodies and the properties of the joints between them 
easily. For the dynamic simulation an impulse-based method is 
used. The distinguishing feature of this method is that all kind 
of constraints are satisfied with the iterative computation of 
impulses. The advantage of this iterative technique is that it is 
fast and accurate results can be achieved. The dynamic 
simulation system uses efficient collision detection methods. 
For every collision that is detected a contact region between 
the objects is determined to provide an accurate collision 
response.  

Key words: VR-system, dynamic simulation, impulse-
based method, multi body systems, mechanical behaviour 

1- Introduction 

Realistic mechanical behaviour in virtual reality applications 
becomes more and more important because it provides a higher 
degree of immersion to the user. A VR application with 
realistic mechanical behaviour has to simulate dynamic effects, 
to detect collisions and to resolve them with frictional forces in 
real-time. 
 
For the dynamic simulation of a VR scene a description of the 
whole scene is needed. This description must include the 
geometries and properties of all rigid bodies as well as the 
constraints between them. A 3D modelling tool is needed to 
create a description of the geometries in a VR scene. In this 
work Maya [1] was used for modelling. In Maya it is already 
possible to describe the properties of rigid bodies. Just for the 
description of the constraints between them an extension of 

Maya had to be written in MEL (Maya Embedded 
Language). So now the complete description of a VR scene 
with all necessary parameters for the dynamic simulation can 
be created with this modelling tool. 
 
In this work two types of constraints are used: joint and non-
penetration constraints. There are many different kinds of 
joints, for example ball joints, hinge joints, servo motors etc. 
A joint links two rigid bodies together by constraints for 
certain points fixed to these rigid bodies and for their 
velocities. The dynamic simulation method has to guarantee 
that these constraints are satisfied in every simulation step. 
Interpenetration of two rigid bodies has to be detected and 
resolved to satisfy the non-penetration constraints.  
 
The dynamic simulation system that is presented in this 
paper satisfies both kinds of constraints by computing 
impulses that simulate the forces acting on the rigid bodies. 
The use of impulses is possible because the simulation makes 
discrete time steps. Exactly the same change of velocity that 
a continuous force causes in one time step can be achieved 
by computing an impulse that changes the velocity at once. 
Many other simulation systems compute continuous forces to 
satisfy the constraints for joints and impulses for the collision 
response. The advantage of the presented method is that all 
constraints can be solved in a uniform way.  
 
The outline of this paper is as follows. In the next section a 
short overview of dynamic simulation systems and collision 
detection and collision response methods is given. 
Afterwards the architecture of the presented simulation 
system is introduced. In the fourth section the dynamic 
simulation method, the collision detection and the collision 
response are described in detail. The succeeding section 
contains results achieved with the presented simulation 
system. This paper ends with a short conclusion and an 
outlook for future work.  
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2- Related Works 

The “Open Dynamics Engine” [2] of Russel Smith is a free 
library for the dynamic simulation of rigid bodies with joint 
and non-penetration constraints. Brian Mirtich and John Canny 
[3][4] describe an impulse-based dynamic simulation of rigid 
bodies. In their simulator “Impulse” they use forces to solve 
joint constraints and impulses for the collision response with 
friction. David Baraff [5] researches in his work mainly the 
non-penetration constraints and compares his results with the 
penalty method. Smith, Mirtich and Baraff all use the friction 
model of Coulomb for their collision response.  
 
For the collision detection and response in a dynamic 
simulation system it is necessary to determine the closest 
points of two rigid bodies. There are two very fast methods to 
solve this problem: the algorithm from Gilbert, Johnson and 
Keerthi [6] (GJK) and the one from Lin and Canny [7]. The 
GJK algorithm uses the Minkowski sum of two polytopes to 
compute the distance between them. It is even able to compute 
the penetration depth of two convex objects. A robust 
implementation of this algorithm was written by Van den 
Bergen [8]. The closest feature algorithm of Lin and Canny is 
not able to handle interpenetration of objects. It works with 
voronoi regions. Brian Mirtich has written an improved version 
of this algorithm. His implementation “V-Clip” [9] is more 
robust and can handle penetration.  
 
One of the main problems of a collision response method is the 
handling of resting contacts. Brian Mirtich [10] uses a velocity 
threshold in his work to determine if the system must handle a 
collision or a resting contact. In the case of a resting contact an 
impulse is computed that reverses the relative velocity of the 
contact points. By applying this impulse interpenetration is 
prevented. Guendelman et al. [11] change the order of a 
simulation step to handle resting contacts. First the velocities 
of all rigid bodies are updated, then the contacts are processed 
and at last the positions of the bodies are updated. The new 
order of the simulation step prevents bodies with resting 
contacts from bouncing.  

3- System architecture 

The dynamic simulation system consists of two parts. One part 
is the extension for the 3D modelling tool Maya to create a VR 
scene including all parameters for the dynamic simulation. The 
other part is the dynamic simulator.  

3.1 - The modelling tool 

The 3D modelling tool Maya has an own dynamic simulation 
system integrated. So it is already possible to define rigid 
bodies with all parameters in Maya. This can be used for the 
modelling of a VR scene with dynamics. The dynamic 
simulator in Maya only supports four different types of joint 
constraints: spherical joints, hinge joints, spring joints and a 
barrier constraint. The joint definitions of Maya cannot be used 
for the simulator in this work because more types of joints are 
needed. In Maya the geometry of a rigid body is used for the 
graphical output and the collision detection. In the dynamic 
simulation of this work a rigid body can have several 
geometries for the graphical output and several geometries for 

the collision detection. The geometries for the graphical 
output and the collision detection do not need to be the same. 
Maya provides the possibility to add own attributes to every 
geometry that is created.  

 

Figure 1: Spherical joint, hinge joint, cardan joint, slider joint 

Every object that is created while modelling a VR scene for 
the dynamic simulator of this work gets an additional 
attribute with the type of this object, for example rigid body, 
collision geometry, spherical joint etc. If a rigid body with 
several geometries for the graphical output and for the 
collision detection should be created then first a rigid body 
must be built. This rigid body already has a geometry that 
will be used for the computation of the inertia tensor, for 
graphical output and for collision detection if there are no 
other collision geometries defined for this body. Afterwards 
all additional geometries can be created as children of the 
rigid body node in the scene graph of Maya. A joint needs at 
least two additional attributes for the two rigid bodies that it 
links together. Some types of joints need more attributes, for 
example for the torque of a servo motor. If the user adds a 
joint to the VR scene, a polygon primitive is added to the 
scene which enables him to define the positions of the joint 
points very easily. The polygon primitives for some kinds of 
joints are shown in figure 1. 

 

Figure 2: Modelling a VR scene with Maya 

A complete VR scene modelled with Maya is shown in 
figure 2. After modelling the description of this scene can be 
exported in a XML-file. This file contains all geometries, 
joints and parameters for the dynamic simulation. Now the 
simulator can import the XML-file and start with the 
simulation. 
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3.2 – The dynamic simulator 

The concept of multi-threading was used for the design of the 
simulation system to provide the possibility to run the dynamic 
simulation parallel to a VR application. The dynamic 
simulation runs in an own thread. In this way it is independent 
from the thread for the graphical user interface. The properties 
of the dynamic simulation system and the parameters of the 
model that is simulated must not be changed and the simulation 
data must not be read during a simulation step to guarantee 
thread safety. The dynamic simulator has a command queue. If 
a property of the simulator or the model should be changed by 
another thread, then this thread must put a command with the 
id of the property and the new value in the queue. Before every 
simulation step all commands in the queue are executed and 
deleted. The multi-threading of the simulation system is shown 
in figure 3. 

command
queue

data storage

add
command

execute commands

simulation step

save data

fetch
command

OpenGL
fetch
data

MEL

Gnuplot

GUI

 

Figure 3: Separation of GUI and dynamic simulation in two 
different threads 

After every simulation step the changed data, like for example 
the positions of the rigid bodies, is copied in a data storage. 
Other threads are allowed to use the data from this storage, for 
example for the graphical output.  

 

Figure 4: Test environment of the dynamic simulator 

For the development of the dynamic simulator a test 
environment (see figure 4) has been implemented. This test 
environment uses the same access to the dynamic simulator as 
a VR application. In this environment the parameters of the 
simulator and of every object in the simulated VR scene can be 
changed at run-time. This is necessary to analyze the behaviour 

of the simulation method with different settings. The user can 
also interact with the objects by applying impulses with a 
simple mouse click. The test environment provides three 
output possibilities for the simulation data. First there is an 
OpenGL output for real-time visualization. Then the data can 
be used for plotting with the program Gnuplot [12] and the 
last possibility is an output as a MEL script which contains 
all geometries and movements of the bodies. This script file 
can be executed in Maya and generates an animation 
sequence of the dynamic simulation which can be rendered 
to get a photorealistic video. 

4- Dynamic simulation 

Every rigid body needs six parameters for the dynamic 
simulation. For the computation of the translational 
movement of a rigid body its mass m, its centre of mass C(t) 
and its velocity v(t) are needed. The rotational movement is 
computed with the inertia tensor J in body-space coordinates, 
a unit quaternion q(t) that describes the rotation of the body 
[13] and the angular velocity ( )tω . The inertia tensor can be 
computed with the mass and the geometry of the rigid body 
[14]. The advantage of using a unit quaternion instead of a 
rotation matrix is that the numerical error can be reduced 
[15]. A quaternion has just four parameters to describe the 
three degrees of freedom of the rotation whereas a rotation 
matrix needs nine parameters. Because of this a solver for 
ordinary differential equations (ODE) which is needed for 
the dynamic simulation produces a greater numerical error if 
rotation matrices are used. The numerical error in a rotation 
matrix has the effect that the vectors of the coordinate system 
that is represented by the matrix are not orthonormal 
anymore. A quaternion just looses its unit length which can 
be easily corrected by renormalizing it. 
 
In the next section the dynamic simulation of an 
unconstrained rigid body will be described. The following 
section will explain how joint constraints can be satisfied 
with impulses. In the last two sections of this chapter the 
collision detection and collision response which are needed 
to satisfy non-penetration constraints will be described.  

4.1 – Simulation step of an unconstrained rigid 
body 

For a dynamic simulation step of a rigid body without any 
constraints the parameters of this body at time  must be 
known and a time step size h must be given. Then the 
parameters for the time 

0t

h0t +  can be computed. The mass 
and the inertia tensor in body-space coordinates of a rigid 
body are constant over time so just the other four parameters 
have to be updated. If gravitation is the only external force 
that acts on the rigid bodies then the acceleration due to 
gravity g changes the velocity v and the centre of mass C as 
follows: 

0 0 0
0

( ) ( ) ( ) ( )
h

v t h v t a t dt v t g h+ = + = + ⋅∫  (1) 
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0 0 0
0

2
0 0

( ) ( ) ( )

1( ) ( )
2

C t h C t v t g t dt

C t v t h g h

+ = + + ⋅

= + ⋅ + ⋅

∫
h

 (2) 

The angular velocity ω  for time  can be computed by 
solving the following differential equation (in body-space 
coordinates): 

0t h+

1( ) ( ( ) ( ( )))t J t J tω ω ω−′ = ⋅ × ⋅  (3) 

The last step is to compute the unit quaternion q for the time 
. To get  the following differential equation has 

to be solved: 
0t h+ 0(q t h+ )

1( ) ( ) ( )
2

q t t q tω′ = ⋅  (4) 

where ( )tω  is the quaternion [0, ( ), ( ), ( )]x y zt t tω ω ω . 
 
Equation (3) is solved with the Taylor series method. Therefore 
the first n derivatives are computed with equation (5) to get an 
error of the order . 1( )nO h +

( 1) 1 ( ) ( )

0

( ) ( ( ( ) ( ( ))))
i

i k

k

i
t J t J t

k
ω ω+ − −

=

⎛ ⎞
= ⋅ ×⎜ ⎟

⎝ ⎠
∑ i kω  (5) 

Using the derivatives the new angular velocity can be 
computed with:  

( )
( ) 1

0 0
0

( ) ( ) (
!

kn
k

k

ht h t O h
k

ω ω +

=

+ = ⋅ +∑ )n  (6) 

After the first n derivatives of ( )tω  are computed the first n 
derivatives of the unit quaternion q(t) can be determined: 

( 1) ( ) ( )

0

1( ) ( ( ) ( ))
2

i
i k

k

i
q t t q t

k
ω+

=

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
∑ i k−

)

 (7) 

Now the quaternion  can be computed with the Taylor 
series of order n: 

0(q t h+

( )
( ) 1

0 0
0

( ) ( ) (
!

kn
k

k

hq t h q t O h
k

+

=

+ = ⋅ +∑ )n  (8) 

If a desired accuracy desiredφ  should be achieved from the ODE 
solver an adaptive time step size is needed. For the 
computation of a new time step size an estimation of the error 
made during a time step is needed. The error made when 
computing the quaternion 0(q t h)+  with the Taylor series 
method of order n can be estimated by the magnitude of the 
(n+1) th element of the Taylor series: 

( 1)
( 1)

0: ( )
( 1)!

n
n

error
hq t
n

φ
+

+= ⋅
+

 (9) 

Exactly as Press et al. did for an embedded Runge-Kutta 
method [16] a new time step size can be computed as 
follows: 

1
n

desired
new

error

h h
φ
φ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (10) 

If errorφ  is larger than desiredφ  then the simulation step must be 
repeated and this time the new step size is used. Otherwise 
the simulation can continue and the new step size is used for 
the next simulation step. 

4.2 – Joint constraints 

In this section will be described how to satisfy joint 
constraints using impulses. The method will be explained for 
a spherical joint. Other joint types can be handled in a similar 
way.  
 
If two rigid bodies are linked with a spherical joint, then a 
point A in the first rigid body is connected to a point B in the 
second one. In each simulation step the two points should 
have the same position and the same velocity, so the two 
constraints of this joint are: 

( ) ( )

( ) ( )
pos

A B ve

A t B t

u t u t

ε

lε

− ≤

− ≤
 (11) 

where posε  and velε  are tolerance values. If both constraints 
are satisfied for time  and a simulation step as in section 
4.1 is made, then both constraints are generally unsatisfied 
for time 

0t

0t h+ . Now impulses have to be computed to 
correct this. 

4.2.1 – Position constraint 

First an impulse p must be found to satisfy the point position 
constraint. The impulse p will be applied at point A to the 
first rigid body and the impulse –p at point B to the second 
rigid body. These impulses must eliminate the distance 
between the two points at time . They do not have any 
influence on the energy of the system because they have 
opposite directions. The positions of the two points at time 

0t h+

0t h+  can be determined by first solving the following 
differential equation for the vector 0 0( ) ( )r t P t C 0( )t= −  
which points from the centre of mass to the respective point: 

( ) ( ) ( )r t t r tω′ = ×  (12) 

This equation can be solved with the Taylor series method 
from section 4.1. Then the new position of the point is given 
by the sum of 0(r t h)+  and  which can be 
determined with equation (2). Now the distance vector d 

0( )C t h+
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between the two points at time 0t h+  can be determined: 

0 0 0( ) : ( ) (d t h B t h A t h+ = + − + )  (13) 

The following matrix has the property that the result of 
multiplying it to an impulse is the velocity change this impulse 
causes: 

1
3

1:K I r J r
m

−= ⋅ − ⋅ ⋅  (14) 

where 3I  is the three-dimensional identity matrix and r  is the 
cross-product matrix corresponding to r. An impulse p that 
eliminates the distance d in a time step of length h must change 
the relative velocity of the two points by d h . This impulse 
must satisfy the following equation: 

0
1 2 1 2

( )
( ) ( )

d t h
K p K p K K p

h
+

= ⋅ − ⋅ − = + ⋅  (15) 

The matrix 1 2( )K K+  is constant, non-singular, symmetric and 
positive definite [10] so the impulse p can be determined by 
inverting this matrix. The point position constraint can be 
satisfied by applying this impulse at time .  0t
 
This method works well for one joint but not for a chain with 
several joints as shown in figure 5. The constraint of the left 
joint of the pendulum is satisfied but not the one of the right 
joint. If an impulse is computed and applied for the right joint 
its constraint will be satisfied but the left joint will break. In 
this case an impulse for every joint is computed in an iterative 
loop. In every iteration step the distances between the joint 
points get smaller. The loop terminates if every constraint is 
satisfied for a certain tolerance posε . 

 

Figure 5: Pendulum with two spherical joints 

With the iterative method it is possible to satisfy all position 
constraints in a multi body system. The computed impulses 
simulate the inner forces in the joints. 

4.2.2 – Velocity constraint 

After computing an impulse for every position constraint and 
applying it to the rigid bodies, the velocities of all bodies 
change. Now a simulation step like in section 4.1 is made. The 
new velocities have the effect that all position constraints are 

satisfied after the simulation step but now in general the 
velocity constraints of the joints are not satisfied anymore. 
This can be corrected with a very similar method like the one 
of section 4.2.1. 
 
First the velocity difference of the two joint points A and B 
must be determined. The velocity  of a point in a rigid 
body can be computed with the following equation:  

pu

( ) ( ) ( ) ( ( ) ( ))Pu t v t t P t C tω= + × −  (16) 

With the velocity difference  and the 
matrix 

( ) : ( ) ( )B Au t u t u t∆ = −

1 2: ( )K K K= +  from the last section an impulse p can 
be computed which eliminates the velocity difference if it is 
applied to the points in opposite directions: 

1:p K u t−= ⋅∆ ( )  (17) 

For every joint an impulse is computed in an iterative loop 
with this equation until every velocity constraint is satisfied 
for a certain tolerance velε . 

4.3 – Collision detection 

If the multi body system which is simulated has non-
penetration constraints, a collision detection method is 
needed to find out if bodies are interpenetrating or colliding. 
For the collision detection every rigid body has at least one 
collision geometry. This geometry can be different from the 
geometry used for the graphical output and for the 
computation of the inertia tensor. If a rigid body has a very 
complex geometry with thousands of triangles it can be 
advantageous to use a collision geometry of lower detail to 
increase the speed of the simulation. The collision detection 
method that is used in this work can only handle convex 
polyhedra. If a non-convex object is simulated, the collision 
geometry must be split into several convex parts.  
 
It makes no sense to test collision geometries of the same 
rigid body for contacts or interpenetration. A collision test 
between static bodies is also unnecessary and just consumes 
time for computation. In these two cases the system can 
decide automatically not to make a collision test. Sometimes 
it is very useful if the modeller of a VR scene can decide 
which pairs of bodies are tested for collisions, for example if 
a pair of bodies will never have contact because of certain 
constraints. Because of this the collision detection has a table 
that defines which pairs of collision objects will be tested for 
contact or interpenetration.  
 
Figure 6 shows a simulation step with collision detection. 
First the translation and rotation of all collision objects must 
be updated. Afterwards the collision detection must find all 
contact points and normals between the bodies. Then a 
simulation step with collision response can be executed. 
After the simulation step the system must check if there is 
any penetration between two bodies. In case of a penetration 
the last simulation step must be undone and the point of time 

 when the respective bodies just had contact must be ct
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determined. This time of contact  can be determined with a 
binary search method. The difference between the time of 
contact and the time before the simulation step gives the time 
step size . With the new time step size the simulation step 
will be executed again. Now the bodies which were 
interpenetrating before will just have contact.  

ct

ch

Determine contact points and
normals

Undo simulation stepInterpenetration
between bodies?

Simulation step

yes

Update transformation of all
collision objects

no

Determine time of contact and
set new time step size

 

Figure 6: Simulation step with collision detection 

The collision detection of the simulation system works in three 
phases. The first phase reduces the collision tests to speed up 
the collision detection. Every body has an axis-aligned 
bounding box with dynamic size. A bounding box test is a very 
fast method to find all rigid bodies that are close enough for a 
collision. In every simulation step a fast sweep and prune 
method determines all overlapping bounding boxes by 
checking whether the intervals on the x-, y- and z-axis of the 
bounding boxes overlap. This method uses insertion sort and 
caches the sorted lists of the last simulation step. Because of 
the spatial and temporal coherence of the dynamic simulation 
the sweep and prune method runs in linear time. For each pair 
of overlapping boxes the collision test continues with the 
second phase. 
 
In the second phase the closest features of every collision pair 
that was found in the first phase are computed. A feature is a 
vertex, an edge or a face. For the determination of the closest 
features V-Clip [9] is used which makes use of voronoi 
regions. V-Clip also computes the distance, the closest points 
and the contact normal of these features. If this distance is 
smaller than a certain tolerance value collisionε  but greater than 
zero a collision is found. Otherwise if the distance is smaller 
than zero the bodies interpenetrate and a binary search must 
start to find the time of contact . If the distance is greater 
than 

ct

collisionε  the bodies are too far apart for a collision.  
 
In the second phase the closest features  and , the closest 
contact points 

1f 2f

1P  and 2P  and the contact normal n have been 
determined. In the third phase a test for multiple contact points 
for each collision is performed. In this phase the system 
searches for features that have a distance which is greater or 
equal than the distance of the closest features and smaller than 
the tolerance value collisionε . If such features are found the 
closest points of these features are additional contact points. 

All contacts between two bodies have the same contact 
normal n. This normal points from the second body to the 
first one. The contact points of each body build a contact 
polygon. Figure 7 shows an example of such a contact 
polygon.  

 

Figure 7: Two rigid bodies with multiple contact points, the 
contact polygon of the second body is marked red 

In the following it will be explained how the features with 
additional contact points for a collision pair can be 
determined. The contact polygon of each body lies in the 
same plane as a face of this body and as its closest feature 
which was computed in the second phase. So firstly these 
two faces must be determined.  
 
As the closest feature lies in the same plane as the searched 
face, the face must be the closest feature itself or one of the 
neighbouring faces. After the candidates for the two searched 
faces have been determined, the dot product of the face 
normal of each candidate of the first body with the face 
normal of each candidate of the second body is build. The 
minimum of the dot products belongs to the searched pair of 
faces because the smallest angle is between these faces. The 
two faces and all neighbouring vertices and edges are 
candidates for features with additional contact points.  
 
If one of the candidate features of the first body lies in the 
voronoi region of a candidate feature of the second body and 
the distance between these two features is smaller than the 
collision tolerance value collisionε  then a new contact is found. 
The contact points of this new contact are the closest points 
of the two features. The contact normal is the normal of the 
contact polygon of the second body. With this method all 
additional contact points can be determined.  

4.4 – Collision response 

The method presented in the paper of Guendelman et al. [11] 
was implemented at first for the collision response in the 
dynamic simulator. This method works well for single rigid 
bodies but it is hard to combine with the method for 
resolving joint constraints. Because of this a new method is 
developed at the moment which is based on the hypothesis of 
Poisson and on the Coulomb friction model. The hypothesis 
of Poisson gives an approximation for the collision impulse 
of two bodies in the direction of the contact normal and the 
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Coulomb friction model is an approximation for the friction 
forces that act in the opposite direction of the tangential 
relative point velocities of the contact point pairs.  
 
The new method for collision response differentiates between 
three cases. If the dot product of the contact normal with the 
relative point velocity  of the contact points is 
greater than zero then the points are separating and no impulse 
needs to be computed. If this product is smaller than zero but 
greater than a tolerance value 

1 2( ) ( )u t u t−

contactε−  then the contact points 
build a resting contact. Otherwise a real collision has occurred.  
 
In the last two cases a collision impulse has to be computed. If 

 is the impulse that makes the relative velocity of the 
contact points in normal direction to zero, then the impulse for 
collision response in normal direction  is computed with the 
following equation (hypothesis of Poisson): 

np−

np+

(1 )np e+ = + ⋅ np−  (18) 

where e is the coefficient of restitution. This coefficient is a 
constant between zero and one depending on the materials of 
the two colliding bodies. If the coefficient of restitution is one, 
then the collision is totally elastic and if it is zero, the collision 
is totally plastic.  
 
To determine the impulse  first the relative velocity of the 
two contact points in normal direction n must be computed 
with the following equation: 

np−

2 1( ) (( ( ) ( )) )nu t u t u t n n∆ = − ⋅ ⋅  (19) 

Afterwards the impulse can be determined with the following 
formula: 

1:n Tp
n K n

= ⋅∆
⋅ ⋅

( )nu t  (20) 

This works for collisions with one contact point but if there are 
multiple contact points the impulse for each pair of contact 
points influences the relative point velocities of all other pairs 
of points. This problem can be solved by iteratively computing 
the impulses . In every iteration step an impulse is 
computed for each pair of contact points until all relative point 
velocities are smaller than a certain tolerance value. This 
method works for a pair of rigid bodies that have multiple 
contact points and that are not linked to other rigid bodies with 
joints. If a non-penetration constraint and a joint constraint 
exist for a rigid body then the iteration loop can be combined 
with the one from section 4.2.2 to find a correct impulse 

np−

np−  
for each contact point. So in every iteration step first an 
impulse for each contact point pair is computed with equation 
(20) and then the velocity constraint for each joint must be 
satisfied by computing an impulse with equation (17). So all 
bodies of a chain have influence on the collision impulse np− . 
With this method a collision response for linked rigid bodies is 
possible.  

The computation of friction impulses using the Coulomb 
friction model has not been implemented yet but this will be 
done soon.  

5- Results 

In this section the results of the dynamic simulation of three 
different models are presented. The first simulation was 
made to measure the performance of the impulse-based 
method. Then with the next model the speed of the collision 
detection will be determined. The last simulation was made 
to take a look at the accuracy of the collision response 
method with friction that was already implemented. All 
simulations were performed on a PC with the following 
configuration: Intel Pentium 4 with 3.4 GHz, 1024 MB 
DDR2 memory and nVidia GeForce 6600 GT with 128 MB 
GDDR3 memory. 
 
The first model that was simulated is a chain of eight rigid 
bodies which are linked with spherical joints (see figure 8). 
The spherical joints at both ends of the chain are fixed so the 
chain will not fall down.  

 

Figure 8: Chain of rigid bodies 

The simulation was performed without collision handling to 
measure only the time that is needed by the impulse-based 
method. A fixed time step size of h=0.01 s was used. The 
tolerance values were set to  m and 1210posε −= 1210velε −=  m 
to achieve a very high accuracy. The Taylor method of order 
five was used to solve the differential equations. The 
simulation had a length of ten seconds, so one thousand 
simulation steps were performed.  
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Figure 9: Simulation performance  

For each step the number of impulses that had to be 

101 -7- Copyright Virtual Concept 



Virtual Concept 2005 An impulse-based dynamic simulation system for VR applications 

computed for satisfying the position and velocity constraints of 
all joints was counted and the time needed for the whole step 
was measured. The results are shown in figure 9. The 
simulation had to compute between 50 and 581 impulses in 
every step. The mean value was 162. The impulse-based 
method needed between 0,000668769 s and 0,003621727 s for 
a whole simulation step. The average time was 0,001537897 s. 
Even in the worst case the simulation was about three times 
faster than real-time. In the average the simulation was more 
than six times faster than real-time. With higher tolerance 
values the simulation can run even faster.  
  
The second model was build to measure the performance of the 
collision detection. The model consists of a grid of cubes 
which fall down on a fixed plane. In this model up to one 
thousand cubes can have contact with each other. Each contact 
can consist of several contact points. During the simulation the 
time needed for all three phases of the collision detection was 
measured. The results are shown in figure 10. 
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Figure 10: Time needed for collision detection 

The figure shows that the time needed for the collision 
detection increases nearly linearly as the number of contact 
points increases which can be explained easily. In the first 
phase of the collision detection a sweep and prune method 
which runs in linear time is used. The closest features 
algorithm of the second phase exploits the spatial and temporal 
coherence of the dynamic simulation and therefore needs only 
constant time for each collision pair. So the second phase 
needs linear time to process all collision pairs. The last phase 
needs constant time for each collision pair to determine the 
collision polygon. Altogether the collision detection needs 
linear time. The mean value of contact points that occurred was 
484 and the average time needed for the collision detection was 
0,012924245 s. A normal VR scene consists of far less than 
one thousand rigid bodies but even for this amount the 
collision detection method is fast enough for a simulation in 
real-time.  
 
The last simulation was made to take a look at the accuracy of 
the collision response method. The model consists of an 
inclined plane with an angle of 22.5 degree and ten cubes 
which are sliding down the plane with different friction 
coefficients. The stopping distance of every cube can be 
computed. After the simulation the computed value is 

compared to the simulated stopping distance. The model is 
shown in figure 11. The transparent cubes in the picture mark 
the computed points where the simulated red cubes are 
expected to stop.  

 

Figure 11: Cubes on an inclined plane 

The time step size used for the simulation was h=0.01 s and 
for the collision detection a tolerance value of 

0.00001 mcollisionε =  was used. The following table shows 
the results of this simulation.  
 

friction  
simulated 
stopping 
distance  

computed 
stopping 
distance 

difference 

0.535 25.70322 25.70234 0.00088 
0.57 19.37585 19.37792 -0.00207 
0.605 15.72423 15.71905 0.00518 
0.64 13.12114 13.11542 0.00572 
0.675 11.11596 11.11587 0.00009 
0.71 10.37414 10.37604 -0.00189 
0.745 9.54625 9.54379 0.00247 
0.78 8.7845 8.78449 0.00001 
0.815 7.55768 7.55506 0.00262 
0.85 6.48953 6.48689 0.00264 

 
Table 1: Stopping distances 

 
The simulation of this model needed about nine seconds until 
all cubes stopped. In the worst case the difference between 
the simulated and the computed stopping distance was 
0.000572 m. The velocities of the decelerating cubes are 
shown in figure 12. This figure shows how the velocities of 
the rigid bodies get linearly smaller until they reach zero. 
The accuracy of the collision response depends on the 
tolerance value of the collision detection and on the used 
time step size. By using a smaller time step size higher 
accuracy can be reached. 
 
The results in this section show that the introduced impulse-
based method is fast and accurate enough for the use in a VR 
application. The VR system VISUM [17] already uses the 
dynamic simulation system of this work for the simulation of 
mechatronic systems. The simulation system is integrated as 
a plug-in in VISUM. 
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Figure 12: Velocities of decelerating rigid bodies 

6- Conclusion and future work 

In this paper an impulse-based dynamic simulation system was 
presented. This system is able to run parallel to a VR 
application and to simulate the dynamics of a VR scene. In a 
multi-processor system the simulation can run on an own 
processor. This raises the performance of the VR application. 
The VR scene for the simulation can be created with an 
extension of the 3D modelling tool Maya and the description of 
this scene can be exported in a XML-file. The impulse-based 
method that was introduced can handle joint and non-
penetration constraints. All constraints are satisfied by 
applying impulses to the rigid bodies. The inner forces of the 
joints are simulated by these impulses. The dynamic simulation 
system can achieve very accurate results in real-time.  
 
It is planned to improve the collision detection by exchanging 
the binary search method with a method that is based on a 
better estimation for the time of contact. As result the 
simulation will run faster. Another two improvements are 
planned for the collision response. The friction model of 
Coulomb will be implemented for the new method and a 
special joint for resting contacts will be developed. A higher 
accuracy should be achieved with this joint. 
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